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TL;DR

This study introduces a novel LLM-based user simulator designed

to replicate the Tip-of-the-Tongue (TOT) cognitive state, where

searchers struggle to recall specific identifiers of the items they seek.

By simulating how users interact with retrieval systems, our simulator

generates synthetic queries that closely mimic human TOT queries.

The synthetic queries generated by our simulator show a high correla-

tionwith how human TOTqueries rank TOT retrieval systems, achiev-

ing a Kendall’s tau value above 0.8.

These synthetic queries have been released and are being used as test

queries in the TREC 2024 TOT track.

Background & Motivation

Tip-of-the-Tongue (TOT) known-item retrieval refers to the process of

searching for a previously encountered item when the searcher is unable

to recall a specific identifier. TOT queries typically exhibit characteristics

such as: 1) expressions of uncertainty, 2) exclusion criteria, 3) distorted

memories, and 4) verbosity.

Problem1: SOTAsearch systems often fail to satisfyTOTsearchers. This

is why many users turn to online forums like Reddit to post TOT-related

questions, expressing frustration at their inability to find answers through

standard web search.

Problem 2: lack of datasets for TOT retrieval. This stems from both 1)

corporate privacy concerns and 2) the challenge of eliciting and capturing

the TOT state during data collection and annotation.

We propose developing a TOT-user simulator that can be used to:

generate synthetic TOT queries to mitigate the lack of available

datasets,

enable eyes-off offline evaluations of TOT retrieval systems, and

support the training and evaluation of TOT retrieval agents in

multi-turn conversational settings.

Method

We focus on the “Movie” domain and apply the developed simulator to

the “Celebrity” and “Landmark” domains to evaluate its generalizability.
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Figure 1. (User Simulation) TOT query generation process.
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Figure 2. (Evaluation of User Simulation) We run 40 different retrievers

with both human and synthetic queries, followed by ranking of

retrievers by their search performance. Then, we observe the Kendall’s

Tau correlation between two rankings of retrievers.

Iterative Refinement of TOT User Simulator

Through 12 iterations of refinement, we refined our prompts and ad-

justed the temperature parameter of GPT-4o. The final version (V6)

achieved the highest τ -value and qualitatively produced queries most

similar to human TOT queries. Additionally, we fine-tuned GPT-4o using

prompt V6, using human TOT queries from the celebrity and landmark

domains collected from Reddit, further improving the τ -value.
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Summary Few-Shot Generation
Requirements Temperature Model

Fine-Tuning
V1 TOT explanation w/o 0-shot 9 rules 0.5 No
V2 TOT explanation w/ 0-shot 9 rules 0.5 No
V3 TOT explanation w/ 6-shot 0 rules 0.7 No
V4 Searcher role play w/ 0-shot 13 rules 0.3, 0.5, 0.7 No
V5 Searcher role play w/ 0-shot 14 rules 0.1, 0.3, 0.5 No
V6 Searcher role play w/ 0-shot 7 Musts + 7 Coulds 0.3 No, Yes
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Figure 3. Different prompt and modeling strategies attempted.
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Let’s do a role play. You are now a person who watched a movie {ToTObject} a long time ago and forgot the title of the movie.
...
I will provide you a basic information about the movie, and you have to follow the guidelines to generate a post.

Information about {ToTObject}:
{WikiSummary}

Guidelines:
MUST FOLLOW:
1. Re�ect the imperfect nature of memory with phrases that express doubt or mixed recollections.
...
7. Provide vivid but ambiguous details to stir the reader’s imagination while leaving them guessing.

COULD FOLLOW:
1. Share a personal anecdote related to when or with whom you watched the movie. Think of unique ways to set the scene.
...
7. Focus on sensory details such as the overall mood, sounds, or emotional impact of the movie, using vivid descriptions.

Generate a post based on these guidelines.
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Figure 4. Prompt Version 6
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Figure 5. Progression of τ -values over the iterations of refinement of

TOT user simulator. All results were within p < 0.05.

In the “Movie” domain, through iterative refinement, we started with

prompt V1, which produced the lowest correlation values (τ = 0.2641
with MRR, τ = 0.3092 with NDCG), and progressed to the fine-tuned

model using prompt V6, which achieved the highest correlation values

(τ = 0.8057 with MRR, τ = 0.8354 with NDCG).

Adapted Prompt V6 to the “Celebrity” domain

→ MRR-τ : 0.6362 ; NDCG-τ : 0.5691 ; (p < 0.05)
Adapted Prompt V6 to the “Landmark” domain

→ MRR-τ : 0.5984 ; NDCG-τ : 0.6967 ; (p < 0.05)
A total of 600 synthetic queries were generated across the Movie,

Celebrity, and Landmark domains and have been released as test

queries in the TREC 2024 TOT Track.
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